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•  Overview of Fast Lossless (FL) Hyperspectral 

Data Compression Algorithm 

•  Fast Lossless FPGA Implementation 

•  Airborne Demonstrations 

Outline 
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Fast Lossless (FL) MSI/HSI Compressor 
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Approach: Predictive compression, encoding samples one-at-a-time 

•  Predictor 

–  Computes predicted sample value from previously encoded 
nearby samples (prediction neighborhood illustrated at right) 

–  Adaptively adjusts prediction weights for each spectral band via 
adaptive linear prediction 

•  Entropy Coder 

–  Losslessly encodes the difference between predicted and 
actual sample values 

–  Adaptively adjusts to changing prediction accuracy 
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•  Purpose: Estimate a desired signal       from an input vector      using a linear estimator that 
is adaptively updated from previous results 

•  Compression of Estimate Error :  
•  Form estimate: 
•  Calculate estimation error: 

         is encoded in the compressed bitstream 
•  Update filter weights using the sign algorithm:  

where µ is the “adaptation step size” parameter 
•  Naive approach: use local neighborhood to construct        around  
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•  Our solution: compute simple preliminary estimates       in each band at the 
spatial location of the sample being predicted, and subtract from the input 
samples.   
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Compression Algorithm: Local Mean Subtraction 
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• Sign algorithm is used for weight adaptation 
• Estimation error is encoded using Golomb power-of-2 codes 
• Dataset is divided into parts (32 lines each), which are 
compressed independently. This provides some error 
containment. 

• Each spectral band has its own prediction weights, 
maintained independently of the prediction weights for other 
spectral bands 

Compression Algorithm: Implementation 
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Compare our “Fast lossless” compression algorithm with: 
• ICER-3D: a 3-D-wavelet-based compressor which is the 
state-of-the-art (ICER-2D is used on both spirit and 
opportunity MER rovers) 

• Rice/USES (GSFC): algorithm used in USES chip, with the 
multispectral predictor option. 

• JPEG-LS: is most efficient for 2D and is applied to the 
spectral bands independently 

 
Other Methods: 
•  Differential JPEG-LS: JPEG-LS applied to the differences between the successive spectral bands 
•  SLSQ and SLSQ-OPT: two versions of Spectral-oriented Least Squares (SLSQ) [Rizzo et al., 2005]. 

Algorithms with complexity roughly similar to that of ours. 
•  3-D CALIC: a nontrivial extension of the basic (2-D) CALIC algorithm to multispectral imagery. More 

complex. 
•  M-CALIC: multiband CALIC, another extension of CALIC to multispectral imagery. More complex. 
•  ASAP: Adaptive Selection of Adaptive Predictors [Aiazzi et al., 2001]; more computationally intensive than 

any of the other compressors in the tables 

Compression Algorithm: Other Methods 
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AVIRIS data sets represent different scenes 

Comparison using Aviris Data Sets Test Bed 
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Tests using 19 uncalibrated AVIRIS data sets: 
•  original sample size: 12 bits/sample  
•  data size:  (614 × 512) pixels × 224 bands  

Methods: 
JPEG-LS: is most efficient for 2D; GSFC/USES use chip; ICER-3D SOA (ICER-2D MER rovers) 

Compressor rate (bits/
sample) 

JPEG-LS (2D) 4.73 

GSFC/USES 
Multispectral 3.89 

ICER-3D 3.23 

Fast Lossless 2.81 

Compression performance averaged 
over 19 uncalibrated AVIRIS 
hyperspectral test data sets. 

JPEG-LS 
(LOCO) (2D)!

GSFC/USES (3D)!

ICER-3D!

Fast Lossless!

About 40% lower bit 
rate than state-of-the-
art 2D approach 
(GSFC/USES). 

Comparison for raw AVIRIS Data 
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• Performance: outstanding compression effectiveness  

• Robust; requires no training data or other specific information about the 
nature of the spectral bands for a fixed instrument dynamic range 

• Simple: well-suited for implementation on FPGA hardware and easily 
parallelizable 

•  Low computational complexity.  required operations per sample are: 

–  6 integer multiplications 

–  25 integer addition, subtraction, or bit shift operations 

–  Golomb coding operations 

• Modest memory requirement: enough to hold one spatial-spectral slice 
of the data (e.g., ≤650 Kbytes for AVIRISng data with 481 bands and 640 
samples/line) 

•  Instrument: well-suited to push broom instruments 

Compression Algorithm Features 
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JPL Lossless Data Compression is a CCSDS Standard  

The Consultative Committee for Space 
Data Systems (CCSDS) Multispectral & 
Hyperspectral Data Compression working 
group has adopted the FL compressor as 
international standard CCSDS-123.0-B-1 
 
FL verification software has demonstrated 
outstanding performance on all of the 
myriad airborne and spaceborne imagers 
represented in the CCSDS test data set: 
•  Hyperspectral imagers:  

AVIRIS, Hyperion, SFSI, CASI, 
M3, CRISM 

•  Ultraspectral sounders:  
AIRS, IASI 

•  Multispectral imagers:  
MODIS, MSG, PLEIADES, 
VEGETATION, SPOT5 
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High Speed FL Implementations: CPU/GPU 

•  FL is well-suited for high-speed parallel implementations: 
–  GPU: 7× speed-up – A GPU hardware implementation targeting the current 

state-of-the-art GPUs from NVIDIA®: mobile version GTX560M and desktop 
version GTX580 

–  OpenMP: 3× speed-up – A 12-core implementation targeting the mobile Intel® 
quad-core i7™ processor and the desktop Intel® hexa-core Xeon™ processor 

•  Example: uncalibrated AVIRIS hyperspectral image (137MBytes) 

–  Compression time: 11.38 sec on single-core CPU, 3.68 sec on 12-core CPU, 
and 1.57 sec on GPU 

Speedup Time	
  (s) Speed	
  
(Mbit/s) 

Speed	
  
(MSamp/s) 

GPU	
  GeForce	
  GTX	
  580 725% 1.57 583.08 44.85 

GPU	
  GeForce	
  GTX	
  560M 596% 1.91 479.29 36.87 

GPU	
  Tesla	
  C2070 486% 2.34 391.21 30.09 

Dual	
  Hex	
  Core	
  (12	
  cores) 309% 3.68 248.76 19.14 

Dual	
  Hex	
  Core	
  (8	
  cores) 272% 4.19 218.48 16.81 

Dual	
  Hex	
  Core	
  (4	
  cores) 259% 4.39 208.53 16.04 

Quad	
  Core	
  (4	
  cores) 196% 6.87 133.25 10.25 

Dual	
  Hex	
  Core	
  (1	
  core) 115% 9.9 92.47 7.11 

Quad	
  Core	
  (1	
  core) 100% 11.38 80.44 6.19 

Data Rate:  
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s 
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s 
FPGA FL: 640 Mbit/s 
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High Speed FL Implementations: CPU/GPU 

•  Redesigned data path implementation: Parallel computation across multiple 32 
frames of the full image 

•  Total speed-up for Version 2 
–  GPU: 56× speed-up– 137MB AVIRIS image compression time: 204 ms (vs. 

11.38 sec) 
–  12-core CPU: 20× speed-up– 137MB AVIRIS image compression time: 569 ms 

(vs. 11.38 sec) 
•  True real-time performance (2×-5× real-time target of 800Mb/s or 50MSamples/sec) 

BUT require 100 Watt 

Version 2: Even faster with re-designed data path 
Version 

 
Time 
(ms) 

Throughput 
 (Mb/s) 

Throughput 
(MSamp/s) 

Speedup 
vs. V1 

 
OMP - v1 - 8 core 4488 194.53 14.96 1.00 
 
OMP - v4 – 12 core 569 1534.68 118.05 7.89 
 
CUDA - v1 1910 457.08 35.16 1.00 
 
CUDA - v4 - 1 GPU 226 3862.97 297.15 8.45 
 
CUDA - v4 - 2 GPU 204 4279.56 329.20 9.36 
 
Decompress (serial) 3585 243.53 18.73 1.00 
 
Decompress (parallel) 857 1018.16 78.32 4.18 
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Data Rate:  
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s 
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s 
FPGA FL: 640 Mbit/s 
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FL FPGA: ARTEMIS & AVIRIS-NG 
FL FPGA Compression IPs for whiskbroom and pushbroom imagers 
 
•  Xilinx Virtex-4 Lab Demonstration for ARTEMIS 

•  Implemented on Xilinx Virtex4 ML401 prototype board. 
•  17 MB image data (32 frames) uploaded serially to 256 DDR SDRAM prior to 

compression 

•  Xilinx Virtex-5 Real-Time Airborne Onboard Compression 
•  Implemented pushbroom compressor on COTS Virtex 5 (equivalent to V5 Rad-hard 

device). Compresses one sample every clock cycle, a speed of 40 MSample/sec 
•  Implementation tested in National Instruments PXI environment which includes a 

PXIe-7962R board with Xilinx Virtex-5 SX50T and two 256MBytes DRAMs. The 
system is connected to the airborne AVIRIS-NG HSI instrument and provides real-time 
onboard compression 

ML401 Board NI PXIe-7962R  Twin Otter hosting AVIRIS-NG 

14 
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FL FPGA: PRISM & AVIRISng 

FMC-CLINK-MINI 

Real-time aircraft onboard compression 
•  Implemented pushbroom FL compressor on a COTS 

Virtex 6. Compresses one sample every clock cycle, a 
speed of 40 MSample/sec. 

•  Implementation tested via Alpha-Data ADPE-XRC-6T 
which includes 

–  Xilinx Virtex-6 LX240T 
–  two 256MBytes DRAMs (32bits  data word, 3.2GBytes/sec 

per bank) 
–  PCIe x4 Gen2 (500MBytes/sec per lane). 

•  PRISM  and AVIRISng HSI image data transferred in 
real-time (60MBytes/sec) to the Virtex-6 via Alpha-Data 
FMC-CLINK-MINI camera link board, compressed on 
the Virtex-6 and transferred through PCIe to a 1GBytes 
SSD drive configured as RAID0 (500MBytes/sec) 

ADPE-XRC-6T/LX240T-3 

PRISM HSI PRISM HSI Support Equipment 
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FL FPGA IP Main Block Diagram  
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FL FPGA Resource Utilization – Virtex6 

Available Used Utilization 
All 

Utilization 
Compressor 

Utilization Virtex5  
Compressor (estimate) 

Slice Register (Flip-Flop) 301,440 37,284 12% 4% 8% 

Slice Look-up-table (LUTs) 150,720 37,374 24% 8% 8% 

Fully used LUT-Flip Flop pairs 50,693 19,105 38% 13% 26% 

Block RAM/FIFO 416 108 25% 12% 12% 

DSP 48eS 768 6 1% 1% 1% 

Device Utilization Virtex6-LX240T-3 (Compressor and Interface) 

Device Utilization SDRAM (AVIRISng)  
Available Used Utilization 

SDRAM Bank#1 (2 segments) 256 MBytes 40 MBytes 20 % 

SDRAM Bank#2 (3 segments) 256 MBytes 60 MBytes 24 % 

Block Critical Path Timing 

Synchronization frames with IMU/GPS <25ns 

Transpose BIP to BIL <10ns 

Predictor 12.070 ns 

Entropy Encoder 10.029 ns 

Packer 7.377 ns 

Timing: Critical Path  

The implementation compresses one sample every clock cycle, 
which results in a speed of 40 MSample/sec 
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Soda Lake Kingsburg Sierra San Joaquin 

Comparison during airbone AVIRISng mission (June 2014)  
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Comparison during airborne AVIRISng mission (June 2014) 
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Summary 
We presented an FPGA implementation of a novel hyperspectral 

data compression algorithm and its flight demonstation: JPL 
adaptive Fast Lossless compressor.  

The implementation targets the Xilinx Virtex FPGAs and provides an 
acceleration of at least 7 times the software implementation on a 
single core of the Intel® Hex Core™ i7, making the use of this 
compressor practical for satellites and planet orbiting missions 
with hyperspectral instruments.  

Future development will provide multiple implementations and near 
lossless data compression for accommodating large Focal Plane 
Array (FPA). We will also develop options to deploy various 
versions of the algorithm to accommodate data from different 
instrument types as well as radiance and reflectance data. And 
finally explore new hardware technologies such as System-on-the-
Chip (SoC) to embed the compression next to the FPA ROI and 
fast I/O interface to the instrument (e.g. optical). 
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Back-up 
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High Speed FL Implementations: CPU/GPU 

•  Redesigned data path implementation:  
–  Parallel computation across multiple 32 frames of the full image 
–  Eliminated data writing to GPU main memory between algorithm stages 

•  Achieves further 8× speedup for CUDA + OpenMP Implementations compared to Version 1 
•  Total speed-up for Version 2 

–  GPU: 56× – 137MB AVIRIS image compression time: 204 ms (vs. 10 sec) 
–  12-core CPU: 24× – 137MB AVIRIS image compression time: 569 ms (vs. 10 sec) 

•  Parallel Decompressor is 4× faster than serial 
•  True real-time performance (2×-5× real-time target of 800Mb/s or 50MSamples/sec) 

•  Supports multiple GPU cards 

Version 2: Even faster with re-designed data path 
Version 

 
Time 
(ms) 

Throughput 
 (Mb/s) 

Throughput 
(MSamp/s) 

Speedup 
vs. V1 

 
OMP - v1 - 8 core 4488 194.53 14.96 1.00 
 
OMP - v4 – 8 core 569 1534.68 118.05 7.89 
 
CUDA - v1 1910 457.08 35.16 1.00 
 
CUDA - v4 - 1 GPU 226 3862.97 297.15 8.45 
 
CUDA - v4 - 2 GPU 204 4279.56 329.20 9.36 
 
Decompress (serial) 3585 243.53 18.73 1.00 
 
Decompress (parallel) 857 1018.16 78.32 4.18 
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2500.00 
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Data Rate:  
AVRISng (481*640 pixels per frames @100 frames/sec): 500Mbit/s 
Future (481*1600 pixels per frames @100 frames/sec): 1300 Mbit/s 
FPGA FL: 640 Mbit/s 
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Comparison during airborne AVIRISng mission (June 2014) 
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FL FPGA IP Main Block Diagram  
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•  Objective: State-of-the-art lossless compression, with low complexity (i.e., fast) 
•  Approach: Predictive compression that adapts to the data via the sign algorithm (a 

variation of the least mean square (LMS) algorithm) (see boxes below) 
•  Compared to Transformed-based compression techniques (such as DCT, Wavelet 

transform), this approach: 
•  requires fewer arithmetic operations and less memory, simplifies data handling, and is 

more straightforward to implement (in software, DSP, or hardware) 
•  yields significantly faster lossless compression 
•  But provides only lossless (and potentially near-lossless) compression 

Predictive Compression 
• Encodes samples one-at-a-time, 

typically in raster scan order 
• Estimates sample value probability 

distribution from previously encoded 
samples.  These estimates are used 
to efficiently encode the sample 
value. 

• The difference between an 
estimated sample value in the actual 
sample value is encoded in the 
compressed bitstream. 

The sign algorithm and the LMS 
algorithm are members of  a 
family of low complexity 
adaptive linear filtering 
techniques. 

• Used extensively in signal 
processing applications 

• Used for compression of 
audio data 

• Not previously well studied 
for image or hyperspectral 
data compression 

previous 
three 
bands 

current 
band current 

sample 

3D neighborhood used 
for prediction.  

Fast Lossless Compression Algorithm 
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FL	
  MSI/HSI	
  Compressor	
  
State of Development 

•  Algorithm 
–  Described in published technical papers [1,2,3] 
–  International standard for spacecraft onboard compression (next slide) 

•  Software 
–  High speed parallel CPU multicore and GPU implementations [4] 

•  Hardware 
–  FPGA lab hardware demonstration @ 33 MSamples/sec [5,6] 
–  FPGA airborne demonstration @40 MSamples/sec with PRISM AVIRIS-NG 

28	
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CCSDS	
  StandardizaAon	
  of	
  FL	
  
The Consultative Committee for Space Data Systems (CCSDS) Multispectral & 
Hyperspectral Data Compression working group has adopted the FL 
compressor as international standard CCSDS-123.0-B-1 [7]. 
 

•  FL verification software has demonstrated outstanding performance on all of 
the myriad airborne and spaceborne imagers represented in the CCSDS test 
data set: 

–  Hyperspectral imagers: 
–  AVIRIS, Hyperion, SFSI, CASI, M3, CRISM 

–  Ultraspectral sounders: 
–  AIRS, IASI 

–  Multispectral imagers: 
–  MODIS, MSG, PLEIADES, VEGETATION, SPOT5 
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JPL Lossless Data Compression is a CCSDS Standard  
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FL	
  Parameters	
  &	
  OpAons	
  
FL Compression Parameters and Options: 
•  Prediction modes: 

•  “regular”: for calibrated images and whisk-broom imagers 
•  “pushbroom”: for raw images from pushbroom imagers (to handle detector artifacts) 

•  Number of previous spectral bands used for prediction, P 
•  P=3 is typical.  Increasing P leads to better but slower compression. 

•  Segment height (number of frames per segment) 
•  Larger segments provide better compression because compressor has more time to adapt to 

image statistics. 
•  Smaller segments provide better robustness to data loss and easier “random access” to 

portions of the data. 
•  Because segments are compressed independently, this provides a simple method of 

exploiting parallelism 
•  Adaptation parameters 

•  Prediction weight adaptation rate (determines how quickly prediction weights adapt to 
changing source statistics) 

•  Entropy coding adaptation interval (determines how quickly entropy coder adapts to changing 
predictor accuracy) 

•  Segment initialization 
•  Initial prediction weights can be tailored for a specific instrument 
•  For raw images, detector offset array can be used to improve compression of initial line of 

each segment 

•  A	
  good	
  set	
  of	
  “default”	
  parameter	
  se]ngs	
  have	
  been	
  developed	
  in	
  the	
  course	
  of	
  evalua_on	
  on	
  the	
  many	
  
different	
  test	
  images	
  in	
  the	
  CCSDS	
  test	
  images 
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FL FPGA Resource Utilization – Virtex6 
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Available Used Utilization 
Slice Register 301,440 38,472 12% 

Slice Look-up-table (LUTs) 150,720 48,115 31% 

Fully used LUT-Flip Flop pairs 68,547 18,040 26% 

Block RAM/FIFO 416 112 26% 

DSP 48eS 768 9 1% 

Device Utilization Virtex6-LX240T-3 (Compressor and Interface) 

Device Utilization SDRAM  
Available Used Utilization 

SDRAM Bank#1 (2 segments) 256 MBytes 24 MBytes 10 % 

SDRAM Bank#2 (3 segments) 256 MBytes 36 MBytes 15 % 

Block Critical Path Timing 

Synchronization with IMU/GPS 

Transpose BIP to BIL 

Predictor 12.033 ns 

Entropy Encoder 10.029 ns 

Packer 7.377 ns 

Timing: Critical Path  
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FL Data Compression FPGA 2014 Flight Test of on PRISM and AVIRISng  
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Comparison for raw PRISM Data (13 bits sample) 
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Comparison for raw AVIRIS Data (13 bits sample) 
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Comparison for raw PRISM Data 
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Near Lossless SW (average: 4.59) : 
Predictor with Maximum Error of Sample 
Data Number = 1 

original sample size: 14 bits/sample 
data size: 640 cross track by 285 bands 
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Hardware Performance Summary  

Critical Path Delay:   24.29ns (41Mhz) 
Total power:   702.20 mW  
The implementation compresses one sample every clock cycle, 

which results in a speed of 40 MSample/sec 

VIRTEX-5 SX50T Timing & Power 

VIRTEX-5 SX50T Device Utilization Summary 

Resource Available VIRTEX-5 SX50T VIRTEX-5QV FX130 

Slice Registers 32,640 122,880 

Slice LUTs 32,640 122,880 

Block RAM/FIFO 132 456 

DSP48E 288 384 

Logic Utilization Used Available Utilization 
Slice Registers 1586 32640 4% 

Slices LUTs 12697 32640 38% 
Block RAM/FIFO 8 132 6% 

DSP4BEs 3 288 1% 

VIRTEX-5 SX50T and Space-qualified Rad Hard VIRTEX-5QVFX130 
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Hyperspectral Imager (AVIRIS) 
•  Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is a multispectral 

imagers with the same detector element for all samples in a given spectral band (“whisk 
broom”-type  instrument ). 

•  Spectral Resolution: AVIRIS has 224 detectors (channels) in the spectral 
dimension, extending over a range of 380nm to 2500 nm.  

•  Spatial resolution: A typical mission, mounting AVIRIS on a NASA aircraft (ER-2), 
produces a spatial resolution of about 20 meters, but can improve that to five meters 
by flying at lower altitudes 

Trend In Sensors  

Source: Multispectral 
Imagery Guide, Logicon 
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•  Hyperspectral images are three-dimensional data sets, where two of the dimensions 
are spatial and the third is spectral.  

•  A hyperspectral image can be regarded as a stack of individual images of the same 
spatial scene, with each such image representing the scene viewed in a narrow 
portion of the electromagnetic spectrum, referred to as spectral bands. 

•  Hyperspectral images typically consist of hundreds of spectral bands; 
   The voluminous amount of data comprising hyperspectral images  
   (up to 645GB) makes them appealing candidates for data compression.  

Hyperspectral Images 

AVIRIS hyperspectral data “cubes” 

Pearl Harbor, Hawaii WTC Disaster Site 
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•  Objective: State-of-the-art lossless compression, with low complexity (i.e., fast) 
•  Approach: Predictive compression that adapts to the data via the sign algorithm (a 

variation of the least mean square (LMS) algorithm) (see boxes below) 
•  Compared to Transformed-based compression techniques (such as DCT, Wavelet 

transform), this approach: 
•  requires fewer arithmetic operations and less memory, simplifies data handling, and is 

more straightforward to implement (in software, DSP, or hardware) 
•  yields significantly faster lossless compression 
•  But provides only lossless (and potentially near-lossless) compression 

Predictive Compression 
• Encodes samples one-at-a-time, 

typically in raster scan order 
• Estimates sample value probability 

distribution from previously encoded 
samples.  These estimates are used 
to efficiently encode the sample 
value. 

• The difference between an 
estimated sample value in the actual 
sample value is encoded in the 
compressed bitstream. 

The sign algorithm and the LMS 
algorithm are members of  a 
family of low complexity 
adaptive linear filtering 
techniques. 

• Used extensively in signal 
processing applications 

• Used for compression of 
audio data 

• Not previously well studied 
for image or hyperspectral 
data compression 

previous 
three 
bands 

current 
band current 

sample 

3D neighborhood used 
for prediction.  

Fast Lossless Compression Algorithm 
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FLEX FPGA IPs Development 
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Capabilities: 
•  Consistency between FLEX software and FPGA compressors 

•  Handles BIP, BIL and BSQ input formats  

•  Floating point data handled by rounding to integers (Phase 1 FLEX) and/or new methods developed during 
Phase 2 effort (Algorithms Subtask 2.3) 

IP Sub-Modules: 
•  Compute image statistics: new design 

•  Format BIL/BSQ to BIP: design to be modified from FL FPGA; native format for compression IP is BIP 

•  Predictor: design to be modified from FL FPGA 

•  Quantizer: new design 

•  Hybrid Entropy Coder: new design, will include GPO2 
encoder developed for FL FPGA 

•  Packer with segment markers: design to be modified from FL 
FPGA  

•  Erasure Correction Encoder: new design 
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Software Driver for FPGA Implementation 
Software Driver Tasks 
•  Interpret command-line parameters 
•  Acquire image parameters 

–  E.g., in the case of an image saved in ENVI format, parse the ENVI header file to extract the image parameters 
•  Send compression parameters (including user-selected values and image parameters) to FPGA 

•  Generate text header for compressed file (e.g., file identifier text plus verbatim ENVI header) and send it to the FPGA board 
–  FPGA needs this header because it is protected with parity words 

–  Assumption: parity words must be generated on FPGA 
•  Read image file (from SSD) and send raw image data to FPGA board 

•  Receive compressed image data from FPGA board and write file to SSD 
 

Notes 
•  Software driver memory requirement may be significantly smaller than image file size 

–  Possible to read image data and send it to FPGA in chunks (large, but much smaller than whole image) 

–  Similarly, compressed data can be received from FPGA and written to file in chunks 
•  Software drivers will use the alpha-data drivers which allow: 

–  DMA from Host to FPGA board SDRAM (raw image) 
–  DMA from FPGA board SDRAM to Host (compressed image) 
–  Read/Write internal FPGA registers 

–  Interrupt Handler to initiate DMA transfer independently of data processing on the FPGA board 

42 
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FPGA Implementation Trade-Offs 

•  Large on-board SDRAM memory is required (min 2 Gbytes) 
–  Needed to support 2-pass compression approach, in which the first pass computes statistics 

over the whole image. 

Alternative approach: Compress image in chunks, which will reduce SDRAM memory 
needed.  This would lead to some variations in quality between chunks when compression is 
done to a compression ratio target. 

•  Serial implementation may not meet RDUCE latency objective 
–  However, level of pipelining is still to be determined for the FPGA implementation 

components such as reading image file through DMA, computing statistics, data 
formatting, compression, and writing compressed data back through DMA. 

Alternative approach: Parallel implementation at segment level; this would require more 
resources and power. 

•  Handling BSQ data format may introduce a latency of approximately 2 seconds 
–  Due to the nature of BSQ images, formatting to BIP may require reading full image into 

local board SDRAM prior to starting formatting operation. 

Alternative approach: Eliminate the capability to handle BSQ input 

•  Innovative algorithmic enhancements may have to be abandoned if they cannot be 
implemented in hardware on schedule 

Alternative approach: Delay HW delivery schedule by 6 months (to month 24 from start) to 
allow migration of such enhancements to HW. 
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Need few Slides with 
Hardware Implementation 

Performance 
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High Speed FL Implementations: FPGA  
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Hardware Performance Summary 

Virtex-5 SX50T 

Available Used Utilization 

Slice Register 32,640 1,586 4% 

Slice Look-up-table 32,640 12,697 38% 

Fully used LUT-FF 
pairs 

13,385 898 6% 

Block RAM/FIFO 132 8 6% 

BUFG/BUFGCTRLs 32 1 3% 

DSP 48eS 288 3 1% 

•  Delay (ns)   24.29 
(41Mhz) 

•  Total Power  
 700mW 

Timing & Power 

Device Utilization 

The implementation compresses one sample every 
clock cycle, yielding a speed of 41 MSample/sec 
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JPL Compression IP integrated into ARTEMIS 

JPL Fast lossless Compression IP is being implemented on the ML401 
Virtex4 Xilinx prototype board. 

JPL Fast Lossless Compression IP will be integrated into Advanced 
Responsive Tactically-Effective Military Imaging Spectrometer 
(ARTEMIS)  payload which consists of a telescope, a high resolution 
pushbroom imaging spectrometer, a high resolution imager and a real-time 
processor. 
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JPL Compression IP integrated into AVIRISng 

JPL Fast lossless Compression IP is currently being implemented on the 
National instrument PXI environment which includes a PXI chassis and 
PXIe-7962R hardware with Xilinx Virtex-5 SX50T and two 256MBytes DRAMs 

PXIe-7962R with Xilinx Virtex-5 SX50T PXI National Instrument Testbed 

PXIe-7962R 

HyspIRI 
Instrument 

PXI Chassis 
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High Speed FL Implementations: FPGA  

Real-time aircraft onboard FPGA compression 
•  Implemented on  a commercial Virtex 5 

(equivalent to V5 Rad-hard device). Compresses 
one sample every clock cycle, a speed of 40 
MSample/sec with total power of 700 mW. 

•  FL compressor implementation tested in National 
Instruments PXI environment which includes a 
PXIe-7962R board with Xilinx Virtex-5 SX50T 
and two 256MBytes DRAMs. The system is 
connected to the airborne AVIRIS-NG HSI 
instrument and compresses HSI data in real-time 
on the plane. 
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Need few Slides with 
Alpha Data Architecture 
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FLEX FPGA Timing (estimated) 
Assumptions: 
•  32 frames/segment, 480×640 samples/frame, 16bits/sample 
•  Transpose/Format 1 segment in 30ms 

•  Compress 1 segment in 246ms (estimate based on FL) 
•  Does not include parity check: Block read of 1 MB; Compute parity check per block; Send parity check 
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FLEX Baseline: BIL/BSQ to BIP 
Band 1 

Band 2 
Band 3 

Band 479 

Band 480 
Band 481 

Pixel 1 
Pixel 2 

Pixel 3 
Pixel 638 Pixel 640 

Pixel 639 

Mapping into DDR Memory 

Addr 0 
Addr 1 

Pixel 

Addr 639 
Addr 640 

Pixel #1 of Band #1 

Pixel #640 of Band #1 
Pixel #1 of Band #2 

Addr 307838 
Addr 307839 

Pixel #639of Band #481 
Pixel #640 of Band #481 

Each band can be divided into 5 Groups 

Addr 0 
Addr 1 

Pixel 

Addr 127 
Addr 128 

Pixel #1 of Band #1 

Pixel #128 of Band #1 
Pixel #129 of Band #1 

Addr 638 
Addr 639 

Pixel #639 of Band #1 
Pixel #640 of Band #1 

Group 1 

Addr 255 
Addr 256 

Pixel #256 of Band #1 
Pixel #257 of Band #1 

Group 2 

Addr 511 
Addr 512 

Pixel #512 of Band #1 
Pixel #513 of Band #1 

Group 5 

Group 4 
Group 3 

Group 1 Group 2 Group 3 Group 4 Group 5 

Pixel 1 to 128 Pixel 129 to 256 Pixel 257 to 384 Pixel 385 to 512 Pixel 513 to 640 

Band 1 

Band 480 

Transpose a Group at a time 

Image is divided into 5 Groups 

Pixel #2 of Band #1 Pixel #2 of Band #1 

Pixel 1 to 8 

128-bit (8x16) 

Pixel 9 to 16 

Pixel  113 to 120 

Pixel  121 to 128 

Burst 1 
Burst 2 

Burst 15 
Burst 16 

Register1[127:0] (pixel 1,…,pixel8) 
Register2[127:0] (pixel 9,…,pixel16) 

Register15[127:0] (pixel 113,…,pixel 120) 
 Register16[127:0] (pixel 121,…,pixel 128) 

Pixel 8 
Pixel 9 

Assumptions: 
481 bands 
640 samples 
32 lines 
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FLEX Baseline: BIL/BSQ to BIP 

Read in image 
- read in frame-by-frame from DDR memory for 32 frames 
- read in group-by-group for 5 groups 
 
Transpose the whole group before going to the next 

one 
- read in burst of 16 128-bit word, saved into 16 registers of 

width 128 bits 
- move data resided in these 16 registers to 16 internal 

memory of size 3848x16 
- total number of bursts to read in one group = 481 
              481x(640/5)x16=481x16x128 

Pixel 1 to 8 

128-bit (8x16) 

Pixel 9 to 16 

Pixel  113 to 120 

Pixel  121 to 128 

Burst 1 
Burst 2 

Burst 15 
Burst 16 

Register1[127:0] (pixel 1,…,pixel8) 
Register2[127:0] (pixel 9,…,pixel16) 

Register15[127:0] (pixel 113,…,pixel 120) 
 Register16[127:0] (pixel 121,…,pixel 128) 

Pixel (16bit) 
Memory 1 

. . . 

Register1[127:112], pixel 1, bd1 

Register1[63:48],pixel5, bd1 

Register1[15:0], pixel 8, bd1 

Addr 0 

Addr 481 

Addr 962 

Addr 1443 

Addr 1924 

Addr 2405 

Addr 2886 

Addr 3367 

Register1[111:96] pixel 2, bd1 

Register1[95:80],pixel3,bd1 

Register1[79:64],pixel4, bd1 

Register1[47:32],pixel 6, bd1 

Register1[31:16],pixel7,bd1 

Pixel (16bit) 
Memory 16 

Register16[127:112] pixel 121,bd1 

Register16[63:48] 

Register16[15:0],pixel128,bd1 

Register16[111:96],pixel,122 
bd1 

Register16[95:80] 

Register16[79:64] 

Register16[47:32] 

Register16[31:16] 

Addr 0 

Addr 481 

Addr 962 

Addr 1443 

Addr 1924 

Addr 2405 

Addr 2886 

Addr 3367 

16 internal memory of total size 128pixels X 481bands X 16bits=61568 X16bits=7696 X 128bits 
(each memory has data in multiple of 128 bits for Writing to DDR because we chosen 8 pixels) Write out transpose 

-write out the whole group transposed to DDR memory 
-write out each internal memory at a time 
-write out in burst of 64 128-bit words (more efficient with DDR) 
-data resided in the internal memory is in multiple of 128-bit 
-total number of bursts to move out one Group of internal memory  
      = 128pixels X 481bands X 16bits = 7696 X 128 bits  
                                                                = 7x64x128 + 1x33x128 (more realistic with burst of 64  in place of 7696) 

Pixel (16bit) 
Memory 2 

Register2[127:112], pixel 9, bd1 

Register1[63:48] 

Register1[15:0],pixel16,bd1 

Addr 0 

Addr 481 

Addr 962 

Addr 1443 

Addr 1924 

Addr 2405 

Addr 2886 

Addr 3367 

Register1[111:96],pixel10,bd1 

Register1[95:80] 

Register1[79:64] 

Register1[47:32] 

Register1[31:16] 

Register2[111:96], pixel 9, bd2 Register2[111:96], pixel 121, bd2 Register1[127:112], pixel 1, bd2 

Register16[15:0],pixel128,bd481 

Memory of one Group (128 pixels 481 bands) 

481 

481*8 
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FLEX Baseline: Predictor IP (from FL) 

B1
(480X1)

B2
(480X1)

B3
(480X1)

BZ_Previous
(Previous Z)

(480X1)

External DDR2 DRAM buffer
(480 X641)

Z rows 640 and 641 are 
duplicate.

BZ
Current Z
(483X1)

Zt
Zt-1
Zt-2
Zt-3

External 
Ring bus

+

B4 = (y_cntr==1) ? B4<<2 : B4 B1
B3 B2

SUM

LMt -

-

-
LMt

LMt(B3<<2)

X

X

X

DIFF3=((B3<<2) - LMt)

DIFF2=((B2<<2) - LMt) DIFF1=((B1<<2) - LMt)

W3

W1

W2

R3=(W3*DIFF3)

R2=(W2*DIFF2)

R1=(W1*DIFF1)

DIFF4= ((Zt-1<<2) - LMt-1)

X
DIFF5=((Zt-2<<2) – LMt-2)

X

DIFF6=((Zt-3<<2) – LMt-3)

X

W4

W5

W6

R6=(W6*DIFF6)

R5=(W5*DIFF5)

R4=(W4*DIFF4)

BE
(Estimate)

(480X1)

Idealy The 
calculations are 
done within one 
33 MHz clock 
cycle

B2-Next
(480X1)

B1-Next
(480X1)

B-DDR
(480X1)

From 
Page 2

BZ_Next
(480X1)

Estimate Array

Zt

Shift Z continuously into 
DDR Buffer (B-DDR) 
during each Z calculation.

Also, Shift Z continuously into 
BZ_Previous Buffer during 
each Z calculation

While processing the 
next Z, upload contents 
of B-DDR buffer, into the 
external DDR2 DRAM.

Load the next Z from the 
Ring bus into the 
BZ_Next buffer while 
previous Z is being 
processed.

1- Before start of next Z 
calculation, shift/load  
B1_Next & B2_Next into 
B1 & B2 buffers.  

2- B2 contents are 
shifted out and shifted 
into B3  at the same 
time. 

3- Download the next 
two upper Z rows into 
B1_Next & B2_Next 
buffer while the previous 
Z is being processed.

From 
Page 2

From 
Page 2

From 
Page 2

From 
Page 2

From 
Page 2

LMt= (x_cntr==1) ? SUM<<1 : SUM

LMt (Local Mean) is 
equal to SUM/2 when 
x_cntr is one.  x_cntr is 
the column counter and 
it’s value is between 1-
641.  x_cntr=1 is a corner 
case (column=1).

LMt-3
LMt-2
LMt-1
LMt

LMt

EC

LMt << 14
(B2<<2)

(B1<<2)

+

EC >> 15

e

if(E<0) e=0
else if (E>((2**13)-3) e= (2**13-3)

else NOP 

E

E>>1

IE

B2

Width requiremts
DIFFx = 15 bits
Wx = 17 bits
Rx = 32 bits
LMx = 14 bits
Bx = 14 bits
(Bx<<2) = 14 bits
LMt<<14= 28 bits
EC= 30 bits
e= 15 bits
E= 13 bits
IE= 12 bits
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FLEX Baseline: Predictor IP (from FL) 

W1-B
(480X1)

wi numbers are 
stored as 16-bits 

2'complement 
format.

wi

W1

To Page 1

IDLE

z_cntr=128 SET_Uyes
SET_U:
µ_st= µ_st+1
µ_st+1= Read from RAM block

IDLE:
µ_st    = Read from RAM block
µ_st+1= Read from RAM block
w_shift= 14
s= (µ_shift - w_shift) + 1
z_cntr= 0

no

DIFF1_P= (Δ[12]==1) ? DIFF1 : (DIFF1*-1)

Note: Same logic is used to calculate W2-W6 

DIFF1

DIFF1_P

DIFF1_P>> s

+ 1'b1

s

((DIFF1_P >> s) >> 1)

(DIFF1_P >> s) + 1'b1

+

Δ

WAIT

if(wi(temp)>17'h1ffff)
 wi+1= 17'h1ffff

else if(wi+1<-17'h1ffff)
 wi+1= -17'h1ffff

else
 wi+1= wi(temp)

wi(temp)

wi+1

Width spec’s
Δ= 15 bits
DIFF1_P= 15 bits
(DIFF1_P>>s)= 15 bits
((DIFF1_P>>s)+1'b1)= 15 bits
((DIFF1_P>>s)>>1)= 15 bits
wi= 17 bits
wi(temp) = 17 bits
wi+1= 17 bits
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FL	
  ImplementaAons:	
  FPGA	
  

ARTEMIS: Advanced Responsive Tactically-Effective Military Imaging Spectrometer 
AVIRIS-NG: Airborne Visible/ Infrared Imaging Spectrometer Next Generation 

PRISM: Portable Remote Imaging Spectrometer (PRISM) Coastal Ocean Sensor 

  
*Excludes data transfer latency to and from SSD or hard drive 
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Demonstration Instrument Compressor 

Name 
Frame 
size 

Sampli
ng rate 

(MS/
sec) Type 

Sample 
Size FPGA 

Throughput
* (MS/sec) 

Latency* (sec) 
for 300MB 

Image 

Lab [1, 2] ARTEMIS Whiskbroom 12 bits Virtex4 33  9.09 

Airborne [3] AVIRIS-NG 640X480 30 Pushbroom 13 bits Virtex5 40 3.75 

Airborne [4] PRISM 640x285 30 Pushbroom 13 bits Virtex6 40 3.75 


